Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 24(19)2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37834075

ABSTRACT

Differential gene expression profiles of various cannabis calli including non-embryogenic and embryogenic (i.e., rooty and embryonic callus) were examined in this study to enhance our understanding of callus development in cannabis and facilitate the development of improved strategies for plant regeneration and biotechnological applications in this economically valuable crop. A total of 6118 genes displayed significant differential expression, with 1850 genes downregulated and 1873 genes upregulated in embryogenic callus compared to non-embryogenic callus. Notably, 196 phytohormone-related genes exhibited distinctly different expression patterns in the calli types, highlighting the crucial role of plant growth regulator (PGRs) signaling in callus development. Furthermore, 42 classes of transcription factors demonstrated differential expressions among the callus types, suggesting their involvement in the regulation of callus development. The evaluation of epigenetic-related genes revealed the differential expression of 247 genes in all callus types. Notably, histone deacetylases, chromatin remodeling factors, and EMBRYONIC FLOWER 2 emerged as key epigenetic-related genes, displaying upregulation in embryogenic calli compared to non-embryogenic calli. Their upregulation correlated with the repression of embryogenesis-related genes, including LEC2, AGL15, and BBM, presumably inhibiting the transition from embryogenic callus to somatic embryogenesis. These findings underscore the significance of epigenetic regulation in determining the developmental fate of cannabis callus. Generally, our results provide comprehensive insights into gene expression dynamics and molecular mechanisms underlying the development of diverse cannabis calli. The observed repression of auxin-dependent pathway-related genes may contribute to the recalcitrant nature of cannabis, shedding light on the challenges associated with efficient cannabis tissue culture and regeneration protocols.


Subject(s)
Cannabis , Hallucinogens , Transcriptome , Cannabis/genetics , Epigenesis, Genetic , Gene Expression Profiling , Plant Growth Regulators , Embryonic Development , Gene Expression Regulation, Plant
2.
Plants (Basel) ; 12(20)2023 Oct 22.
Article in English | MEDLINE | ID: mdl-37896109

ABSTRACT

This study extensively characterizes the morphological characteristics, including the leaf morphology, plant structure, flower development, and trichome features throughout the entire life cycle of Cannabis sativa L. cv. White Widow. The developmental responses to photoperiodic variations were investigated from germination to mature plant senescence. The leaf morphology showed a progression of complexity, beginning with serrations in the 1st true leaves, until the emergence of nine leaflets in the 6th true leaves, followed by a distinct shift to eight, then seven leaflets with the 14th and 15th true leaves, respectively. Thereafter, the leaf complexity decreased, culminating in the emergence of a single leaflet from the 25th node. The leaf area peaked with the 12th leaves, which coincided with a change from opposite to alternate phyllotaxy. The stipule development at nodes 5 and 6 signified the vegetative phase, followed by bract and solitary flower development emerging in nodes 7-12, signifying the reproductive phase. The subsequent induction of short-day photoperiod triggered the formation of apical inflorescence. Mature flowers displayed abundant glandular trichomes on perigonal bracts, with stigma color changing from whitish-yellow to reddish-brown. A pronounced increase in trichome density was evident, particularly on the abaxial bract surface, following the onset of flowering. The trichomes exhibited simultaneous growth in stalk length and glandular head diameter and pronounced shifts in color. Hermaphroditism occurred well after the general harvest date. This comprehensive study documents the intricate photoperiod-driven morphological changes throughout the complete lifecycle of Cannabis sativa L. cv. White Widow. The developmental responses characterized provide valuable insights for industrial and research applications.

3.
Biotechnol Adv ; 69: 108247, 2023 12.
Article in English | MEDLINE | ID: mdl-37659744

ABSTRACT

Psychedelic mushrooms containing psilocybin and related tryptamines have long been used for ethnomycological purposes, but emerging evidence points to the potential therapeutic value of these mushrooms to address modern neurological, psychiatric health, and related disorders. As a result, psilocybin containing mushrooms represent a re-emerging frontier for mycological, biochemical, neuroscience, and pharmacology research. This work presents crucial information related to traditional use of psychedelic mushrooms, as well as research trends and knowledge gaps related to their diversity and distribution, technologies for quantification of tryptamines and other tryptophan-derived metabolites, as well as biosynthetic mechanisms for their production within mushrooms. In addition, we explore the current state of knowledge for how psilocybin and related tryptamines are metabolized in humans and their pharmacological effects, including beneficial and hazardous human health implications. Finally, we describe opportunities and challenges for investigating the production of psychedelic mushrooms and metabolic engineering approaches to alter secondary metabolite profiles using biotechnology integrated with machine learning. Ultimately, this critical review of all aspects related to psychedelic mushrooms represents a roadmap for future research efforts that will pave the way to new applications and refined protocols.


Subject(s)
Agaricales , Hallucinogens , Humans , Hallucinogens/therapeutic use , Hallucinogens/pharmacology , Psilocybin/pharmacology , Psilocybin/therapeutic use , Agaricales/metabolism , Tryptamines/metabolism , Biotechnology , Biology
4.
Plants (Basel) ; 12(10)2023 May 11.
Article in English | MEDLINE | ID: mdl-37653871

ABSTRACT

Mendelian heredity is the cornerstone of plant breeding and has been used to develop new varieties of plants since the 19th century. However, there are several breeding cases, such as cytoplasmic inheritance, methylation, epigenetics, hybrid vigor, and loss of heterozygosity (LOH), where Mendelian heredity is not applicable, known as non-Mendelian heredity. This type of inheritance can be influenced by several factors besides the genetic architecture of the plant and its breeding potential. Therefore, exploring various non-Mendelian heredity mechanisms, their prevalence in plants, and the implications for plant breeding is of paramount importance to accelerate the pace of crop improvement. In this review, we examine the current understanding of non-Mendelian heredity in plants, including the mechanisms, inheritance patterns, and applications in plant breeding, provide an overview of the various forms of non-Mendelian inheritance (including epigenetic inheritance, cytoplasmic inheritance, hybrid vigor, and LOH), explore insight into the implications of non-Mendelian heredity in plant breeding, and the potential it holds for future research.

6.
Genes (Basel) ; 14(4)2023 03 23.
Article in English | MEDLINE | ID: mdl-37107535

ABSTRACT

In the face of a growing global population, plant breeding is being used as a sustainable tool for increasing food security. A wide range of high-throughput omics technologies have been developed and used in plant breeding to accelerate crop improvement and develop new varieties with higher yield performance and greater resilience to climate changes, pests, and diseases. With the use of these new advanced technologies, large amounts of data have been generated on the genetic architecture of plants, which can be exploited for manipulating the key characteristics of plants that are important for crop improvement. Therefore, plant breeders have relied on high-performance computing, bioinformatics tools, and artificial intelligence (AI), such as machine-learning (ML) methods, to efficiently analyze this vast amount of complex data. The use of bigdata coupled with ML in plant breeding has the potential to revolutionize the field and increase food security. In this review, some of the challenges of this method along with some of the opportunities it can create will be discussed. In particular, we provide information about the basis of bigdata, AI, ML, and their related sub-groups. In addition, the bases and functions of some learning algorithms that are commonly used in plant breeding, three common data integration strategies for the better integration of different breeding datasets using appropriate learning algorithms, and future prospects for the application of novel algorithms in plant breeding will be discussed. The use of ML algorithms in plant breeding will equip breeders with efficient and effective tools to accelerate the development of new plant varieties and improve the efficiency of the breeding process, which are important for tackling some of the challenges facing agriculture in the era of climate change.


Subject(s)
Artificial Intelligence , Crops, Agricultural , Crops, Agricultural/genetics , Plant Breeding/methods , Machine Learning
7.
Biology (Basel) ; 12(3)2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36979133

ABSTRACT

Drug-type cannabis is often multiplied using micropropagation methods to produce genetically uniform and disease/insect-free crops. However, micropropagated plantlets often exhibit phenotypic variation, leading to culture decline over time. In cannabis, the source of these changes remains unknown, though several factors (e.g., explant's sources and prolonged in vitro culture) can result in such phenotypical variations. The study presented herein evaluates the effects of explant sources (i.e., nodal segments derived from the basal, near-basal, middle, and apical parts of the greenhouse-grown mother plant) over multiple subcultures (4 subcultures during 235 days) on multiplication parameters and leaf morphological traits of in vitro cannabis plantlets. While initial in vitro responses were similar among explants sourced from different regions of the plant, there were significant differences in performance over the course of multiple subcultures. Specifically, explant source and/or the number of subcultures significantly impacted plantlet height, number of nodes, and canopy surface area. The explants derived from the basal and near-basal parts of the plant resulted in the tallest shoots with the greatest number of nodes, while the explants derived from the middle and apical regions led to shorter shoots with fewer nodes. Moreover, the basal-derived explants produced cannabis plantlets with shorter but wider leaves which demonstrated the potential of such explants for in vitro rejuvenation practices with minimal culture decline. This study provides new evidence into the long-term impacts of explant source in cannabis micropropagation.

8.
Biotechnol Adv ; 62: 108074, 2023.
Article in English | MEDLINE | ID: mdl-36481387

ABSTRACT

For centuries, cannabis has been a rich source of fibrous, pharmaceutical, and recreational ingredients. Phytocannabinoids are the most important and well-known class of cannabis-derived secondary metabolites and display a broad range of health-promoting and psychoactive effects. The unique characteristics of phytocannabinoids (e.g., metabolite likeness, multi-target spectrum, and safety profile) have resulted in the development and approval of several cannabis-derived drugs. While most work has focused on the two main cannabinoids produced in the plant, over 150 unique cannabinoids have been identified. To meet the rapidly growing phytocannabinoid demand, particularly many of the minor cannabinoids found in low amounts in planta, biotechnology offers promising alternatives for biosynthesis through in vitro culture and heterologous systems. In recent years, the engineered production of phytocannabinoids has been obtained through synthetic biology both in vitro (cell suspension culture and hairy root culture) and heterologous systems. However, there are still several bottlenecks (e.g., the complexity of the cannabinoid biosynthetic pathway and optimizing the bioprocess), hampering biosynthesis and scaling up the biotechnological process. The current study reviews recent advances related to in vitro culture-mediated cannabinoid production. Additionally, an integrated overview of promising conventional approaches to cannabinoid production is presented. Progress toward cannabinoid production in heterologous systems and possible avenues for avoiding autotoxicity are also reviewed and highlighted. Machine learning is then introduced as a powerful tool to model, and optimize bioprocesses related to cannabinoid production. Finally, regulation and manipulation of the cannabinoid biosynthetic pathway using CRISPR- mediated metabolic engineering is discussed.


Subject(s)
Cannabinoids , Cannabis , Cannabinoids/metabolism , Synthetic Biology , Cannabis/metabolism , Biotechnology , Plants/metabolism
9.
Front Plant Sci ; 13: 1025477, 2022.
Article in English | MEDLINE | ID: mdl-36438083

ABSTRACT

Solanum lycopersicum L. cv. 'Microtom' (MicroTom) is a model organism with a relatively rapid life cycle, and wide library of genetic mutants available to study different aspects of plant development. Despite its small stature, conventional MicroTom research often requires expensive growth cabinets and/or expansive greenhouse space, limiting the number of experimental and control replications needed for experiments, and can render plants susceptible to pests and disease. Thus, alternative experimental approaches must be devised to reduce the footprint of experimental units and limit the occurrence problematic confounding variables. Here, tissue culture is presented as a powerful option for MicroTom research that can quell the complications associated with conventional MicroTom research methods. A previously established, non-invasive, analytical tissue culture system is used to compare in vitro and conventionally produced MicroTom by assessing photosynthesis, respiration, diurnal carbon gain, and fruit pigments. To our knowledge, this is the first publication that measures in vitro MicroTom fruit pigments and compares diurnal photosynthetic/respiration responses to abiotic factors between in vitro and ex vitro MicroTom. Comparable trends would validate tissue culture as a new benchmark method in MicroTom research, as it is like Arabidopsis, allowing replicable, statistically valid, high throughput genotyping and selective phenotyping experiments. Combining the model plant MicroTom with advanced tissue culture methods makes it possible to study bonsai-style MicroTom responses to light, temperature, and atmospheric stimuli in the absence of confounding abiotic stress factors that would otherwise be unachievable using conventional methods.

10.
Plants (Basel) ; 11(18)2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36145783

ABSTRACT

The characteristic growth habit, abundant green foliage, and aromatic inflorescences of cannabis provide the plant with an ideal profile as an ornamental plant. However, due to legal barriers, the horticulture industry has yet to consider the ornamental relevance of cannabis. To evaluate its suitability for introduction as a new ornamental species, multifaceted commercial criteria were analyzed. Results indicate that ornamental cannabis would be of high value as a potted-plant or in landscaping. However, the readiness timescale for ornamental cannabis completely depends on its legal status. Then, the potential of cannabis chemotype Ⅴ, which is nearly devoid of phytocannabinoids and psychoactive properties, as the foundation for breeding ornamental traits through mutagenesis, somaclonal variation, and genome editing approaches has been highlighted. Ultimately, legalization and breeding for ornamental utility offers boundless opportunities related to economics and executive business branding.

11.
Biology (Basel) ; 11(5)2022 May 10.
Article in English | MEDLINE | ID: mdl-35625457

ABSTRACT

Supplemental sugar additives for plant tissue culture cause mixotrophic growth, complicating carbohydrate metabolism and photosynthetic relationships. A unique platform to test and model the photosynthetic proficiency and biomass accumulation of micropropagated plantlets was introduced and applied to Cannabis sativa L. (cannabis), an emerging crop with high economic interest. Conventional in vitro systems can hinder the photoautotrophic ability of plantlets due to low light intensity, low vapor pressure deficit, and limited CO2 availability. Though exogenous sucrose is routinely added to improve in vitro growth despite reduced photosynthetic capacity, reliance on sugar as a carbon source can also trigger negative responses that are species-dependent. By increasing photosynthetic activity in vitro, these negative consequences can likely be mitigated, facilitating the production of superior specimens with enhanced survivability. The presented methods use an open-flow/force-ventilated gas exchange system and infrared gas analysis to measure the impact of [CO2], light, and additional factors on in vitro photosynthesis. This system can be used to answer previously overlooked questions regarding the nature of in vitro plant physiology to enhance plant tissue culture and the overall understanding of in vitro processes, facilitating new research methods and idealized protocols for commercial tissue culture.

12.
Appl Microbiol Biotechnol ; 106(9-10): 3507-3530, 2022 May.
Article in English | MEDLINE | ID: mdl-35575915

ABSTRACT

Sequencing technologies are evolving at a rapid pace, enabling the generation of massive amounts of data in multiple dimensions (e.g., genomics, epigenomics, transcriptomic, metabolomics, proteomics, and single-cell omics) in plants. To provide comprehensive insights into the complexity of plant biological systems, it is important to integrate different omics datasets. Although recent advances in computational analytical pipelines have enabled efficient and high-quality exploration and exploitation of single omics data, the integration of multidimensional, heterogenous, and large datasets (i.e., multi-omics) remains a challenge. In this regard, machine learning (ML) offers promising approaches to integrate large datasets and to recognize fine-grained patterns and relationships. Nevertheless, they require rigorous optimizations to process multi-omics-derived datasets. In this review, we discuss the main concepts of machine learning as well as the key challenges and solutions related to the big data derived from plant system biology. We also provide in-depth insight into the principles of data integration using ML, as well as challenges and opportunities in different contexts including multi-omics, single-cell omics, protein function, and protein-protein interaction. KEY POINTS: • The key challenges and solutions related to the big data derived from plant system biology have been highlighted. • Different methods of data integration have been discussed. • Challenges and opportunities of the application of machine learning in plant system biology have been highlighted and discussed.


Subject(s)
Genomics , Systems Biology , Computational Biology/methods , Genomics/methods , Machine Learning , Metabolomics/methods , Plants/genetics , Proteomics/methods , Systems Biology/methods
13.
Sci Rep ; 12(1): 5038, 2022 03 23.
Article in English | MEDLINE | ID: mdl-35322147

ABSTRACT

Developing and applying a novel and sustainable energy crop is essential to reach an efficient and economically feasible technology for bioenergy production. In this study, plant tissue culture, also referred to as in vitro culture, is introduced as one of the most promising and environmentally friendly methods for the sustainable supply of biofuels. The current study investigates the potential of in vitro -grown industrial hemp calli obtained from leaf, root, and stem explants as a new generation of energy crop. For this purpose, the in vitro grown explants were first fully characterized in terms of elemental and chemical composition. Secondly, HTL experiments were designed by Design Expert 11 with a particular focus on biocrude. Finally, the chemical components, functional groups, and petroleum-like hydrocarbons present in the biocrude were identified by PY-GCMS. A 22.61 wt.% biocrude was produced for the sample grown through callogenesis of the leaf (CL). The obtained biocrude for CL consisted of 19.55% acids, 0.42% N compounds, 15.44% ketones, 16.03% aldehydes, 2.21% furans, 20.01% aromatics, 5.2% alcohols, and 19.88% hydrocarbons. To the best of the authors' knowledge, this is the first report that in vitro -grown biomass is hydrothermally liquefied toward biocrude production; the current work paves the way for integrating plant tissue culture and thermochemical processes for the generation of biofuels and value-added chemicals.


Subject(s)
Biofuels , Petroleum , Biomass
14.
Plants (Basel) ; 10(11)2021 Nov 06.
Article in English | MEDLINE | ID: mdl-34834760

ABSTRACT

In vitro seed germination is a useful tool for developing a variety of biotechnologies, but cannabis has presented some challenges in uniformity and germination time, presumably due to the disinfection procedure. Disinfection and subsequent growth are influenced by many factors, such as media pH, temperature, as well as the types and levels of contaminants and disinfectants, which contribute independently and dynamically to system complexity and nonlinearity. Hence, artificial intelligence models are well suited to model and optimize this dynamic system. The current study was aimed to evaluate the effect of different types and concentrations of disinfectants (sodium hypochlorite, hydrogen peroxide) and immersion times on contamination frequency using the generalized regression neural network (GRNN), a powerful artificial neural network (ANN). The GRNN model had high prediction performance (R2 > 0.91) in both training and testing. Moreover, a genetic algorithm (GA) was subjected to the GRNN to find the optimal type and level of disinfectants and immersion time to determine the best methods for contamination reduction. According to the optimization process, 4.6% sodium hypochlorite along with 0.008% hydrogen peroxide for 16.81 min would result in the best outcomes. The results of a validation experiment demonstrated that this protocol resulted in 0% contamination as predicted, but germination rates were low and sporadic. However, using this sterilization protocol in combination with the scarification of in vitro cannabis seed (seed tip removal) resulted in 0% contamination and 100% seed germination within one week.

15.
Front Plant Sci ; 12: 757869, 2021.
Article in English | MEDLINE | ID: mdl-34745189

ABSTRACT

Micropropagation techniques offer opportunity to proliferate, maintain, and study dynamic plant responses in highly controlled environments without confounding external influences, forming the basis for many biotechnological applications. With medicinal and recreational interests for Cannabis sativa L. growing, research related to the optimization of in vitro practices is needed to improve current methods while boosting our understanding of the underlying physiological processes. Unfortunately, due to the exorbitantly large array of factors influencing tissue culture, existing approaches to optimize in vitro methods are tedious and time-consuming. Therefore, there is great potential to use new computational methodologies for analyzing data to develop improved protocols more efficiently. Here, we first tested the effects of light qualities using assorted combinations of Red, Blue, Far Red, and White spanning 0-100 µmol/m2/s in combination with sucrose concentrations ranging from 1 to 6% (w/v), totaling 66 treatments, on in vitro shoot growth, root development, number of nodes, shoot emergence, and canopy surface area. Collected data were then assessed using multilayer perceptron (MLP), generalized regression neural network (GRNN), and adaptive neuro-fuzzy inference system (ANFIS) to model and predict in vitro Cannabis growth and development. Based on the results, GRNN had better performance than MLP or ANFIS and was consequently selected to link different optimization algorithms [genetic algorithm (GA), biogeography-based optimization (BBO), interior search algorithm (ISA), and symbiotic organisms search (SOS)] for prediction of optimal light levels (quality/intensity) and sucrose concentration for various applications. Predictions of in vitro conditions to refine growth responses were subsequently tested in a validation experiment and data showed no significant differences between predicted optimized values and observed data. Thus, this study demonstrates the potential of machine learning and optimization algorithms to predict the most favorable light combinations and sucrose levels to elicit specific developmental responses. Based on these, recommendations of light and carbohydrate levels to promote specific developmental outcomes for in vitro Cannabis are suggested. Ultimately, this work showcases the importance of light quality and carbohydrate supply in directing plant development as well as the power of machine learning approaches to investigate complex interactions in plant tissue culture.

16.
Int J Mol Sci ; 22(11)2021 May 26.
Article in English | MEDLINE | ID: mdl-34073522

ABSTRACT

For a long time, Cannabis sativa has been used for therapeutic and industrial purposes. Due to its increasing demand in medicine, recreation, and industry, there is a dire need to apply new biotechnological tools to introduce new genotypes with desirable traits and enhanced secondary metabolite production. Micropropagation, conservation, cell suspension culture, hairy root culture, polyploidy manipulation, and Agrobacterium-mediated gene transformation have been studied and used in cannabis. However, some obstacles such as the low rate of transgenic plant regeneration and low efficiency of secondary metabolite production in hairy root culture and cell suspension culture have restricted the application of these approaches in cannabis. In the current review, in vitro culture and genetic engineering methods in cannabis along with other promising techniques such as morphogenic genes, new computational approaches, clustered regularly interspaced short palindromic repeats (CRISPR), CRISPR/Cas9-equipped Agrobacterium-mediated genome editing, and hairy root culture, that can help improve gene transformation and plant regeneration, as well as enhance secondary metabolite production, have been highlighted and discussed.


Subject(s)
CRISPR-Cas Systems , Cannabis , Gene Editing , Plants, Genetically Modified , Agrobacterium , Cannabis/genetics , Cannabis/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism
17.
Appl Microbiol Biotechnol ; 105(12): 5201-5212, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34086118

ABSTRACT

Plant callus is generally considered to be a mass of undifferentiated cells and can be used for secondary metabolite production, physiological studies, and plant transformation/regeneration. However, there are several types of callus with different morphological and developmental characteristics and not all are suitable for all applications. Callogenesis is a multivariable developmental process affected by several intrinsic and extrinsic factors, but the most important driver is plant growth regulator (PGRs) levels and type. Since callogenesis is a non-linear process influenced by many different factors, robust computational methods such as machine learning algorithms have great potential to model, predict, and optimize callus growth and development. The current study was conducted to evaluate the effect of PGRs on callus morphology in drug-type Cannabis sativa to maximize callus growth and promote embryogenic callus production. For this aim, random forest (RF) and support vector machine (SVM) were applied in conjunction with image processing to model and predict callus morphological and physical traits. The results showed that SVM was more accurate than RF. In order to find the optimal level of PGRs for optimizing callus growth and development, the SVM was linked to a genetic algorithm (GA). To confirm the reliability of SVM-GA, the optimized-predicted outcomes were tested in a validation experiment that revealed SVM-GA was able to accurately model and optimize the system. Moreover, our results showed that there is a significant correlation between embryogenic callus production and the true density of callus. KEY POINTS: • The effect of PGRs on callus growth and development of cannabis was studied. • The predictive accuracy of SVM and RF was evaluated and compared. • GA was linked to the SVM for optimizing the callus growth and development.


Subject(s)
Cannabis , Support Vector Machine , Algorithms , Growth and Development , Reproducibility of Results
18.
Molecules ; 26(7)2021 Apr 03.
Article in English | MEDLINE | ID: mdl-33916717

ABSTRACT

The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas-mediated genome editing system has recently been used for haploid production in plants. Haploid induction using the CRISPR/Cas system represents an attractive approach in cannabis, an economically important industrial, recreational, and medicinal plant. However, the CRISPR system requires the design of precise (on-target) single-guide RNA (sgRNA). Therefore, it is essential to predict off-target activity of the designed sgRNAs to avoid unexpected outcomes. The current study is aimed to assess the predictive ability of three machine learning (ML) algorithms (radial basis function (RBF), support vector machine (SVM), and random forest (RF)) alongside the ensemble-bagging (E-B) strategy by synergizing MIT and cutting frequency determination (CFD) scores to predict sgRNA off-target activity through in silico targeting a histone H3-like centromeric protein, HTR12, in cannabis. The RF algorithm exhibited the highest precision, recall, and F-measure compared to all the tested individual algorithms with values of 0.61, 0.64, and 0.62, respectively. We then used the RF algorithm as a meta-classifier for the E-B method, which led to an increased precision with an F-measure of 0.62 and 0.66, respectively. The E-B algorithm had the highest area under the precision recall curves (AUC-PRC; 0.74) and area under the receiver operating characteristic (ROC) curves (AUC-ROC; 0.71), displaying the success of using E-B as one of the common ensemble strategies. This study constitutes a foundational resource of utilizing ML models to predict gRNA off-target activities in cannabis.


Subject(s)
CRISPR-Cas Systems/genetics , Cannabis/genetics , Centromere/metabolism , Computer Simulation , Gene Knockout Techniques , Histones/genetics , Area Under Curve , ROC Curve , Support Vector Machine
19.
Plant Methods ; 17(1): 13, 2021 Feb 05.
Article in English | MEDLINE | ID: mdl-33546685

ABSTRACT

BACKGROUND: Paclitaxel is a well-known chemotherapeutic agent widely applied as a therapy for various types of cancers. In vitro culture of Corylus avellana has been named as a promising and low-cost strategy for paclitaxel production. Fungal elicitors have been reported as an impressive strategy for improving paclitaxel biosynthesis in cell suspension culture (CSC) of C. avellana. The objectives of this research were to forecast and optimize growth and paclitaxel biosynthesis based on four input variables including cell extract (CE) and culture filtrate (CF) concentration levels, elicitor adding day and CSC harvesting time in C. avellana cell culture, as a case study, using general regression neural network-fruit fly optimization algorithm (GRNN-FOA) via data mining approach for the first time. RESULTS: GRNN-FOA models (0.88-0.97) showed the superior prediction performances as compared to regression models (0.57-0.86). Comparative analysis of multilayer perceptron-genetic algorithm (MLP-GA) and GRNN-FOA showed very slight difference between two models for dry weight (DW), intracellular and extracellular paclitaxel in testing subset, the unseen data. However, MLP-GA was slightly more accurate as compared to GRNN-FOA for total paclitaxel and extracellular paclitaxel portion in testing subset. The slight difference was observed in maximum growth and paclitaxel biosynthesis optimized by FOA and GA. The optimization analysis using FOA on developed GRNN-FOA models showed that optimal CE [4.29% (v/v)] and CF [5.38% (v/v)] concentration levels, elicitor adding day (17) and harvesting time (88 h and 19 min) can lead to highest paclitaxel biosynthesis (372.89 µg l-1). CONCLUSIONS: Great accordance between the predicted and observed values of DW, intracellular, extracellular and total yield of paclitaxel, and also extracellular paclitaxel portion support excellent performance of developed GRNN-FOA models. Overall, GRNN-FOA as new mathematical tool may pave the way for forecasting and optimizing secondary metabolite production in plant in vitro culture.

20.
Environ Sci Pollut Res Int ; 28(11): 13072-13082, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33486683

ABSTRACT

Water shortage and stress around the world lead to increasing wastewater reuse for the agricultural sector. In addition to its benefits, it can be a way to transfer pollutants such as potentially harmful elements (PHEs) to the human food chain. Many studies have been conducted for this purpose on various vegetables; however, no comprehensive study has been performed on lettuce (Lactuca sativa L.) and coriander (Coriandrum sativum L.). In this respect, the study was aimed to meta-analyze the PHEs concentration in the edible part of lettuce and coriander vegetables irrigated by wastewater. Carcinogenic risk (CR) and noncarcinogenic risk (non-CR) assessments were also done for consumers. After reviewing 32 included articles (41 studies), the rank order of the PHEs in lettuce was obtained as Fe (194.76 mg/kg) > Zn (133.47 mg/kg) > Cu (55.70 mg/kg) > Ni (26.96 mg/kg) > Pb (12.80 mg/kg) > Cr (9.68 mg/kg) Cd (8.24 mg/kg) > As (1.13 mg/kg) and for coriander Fe (1056 mg/kg) > Zn (79.80 mg/kg) > Cr (28.34 mg/kg) > Ni (24.71 mg/kg) > Cu (17.46 mg/kg) > Pb (13.23 mg/kg) > Cd (2.23 mg/kg). Total target hazard quotient (TTHQ) for adults in all countries except UAE, France, and Kenya and for children all countries except Kenya was more than 1 value. The carcinogenic risk for adult groups in Nigeria, France, China, and Iran countries was not acceptable (CR > 1E-4). As a consequence, it can be noted that wastewater reuse in the agriculture sector can endanger the health of consumers.


Subject(s)
Coriandrum , Metals, Heavy , Soil Pollutants , Adult , Child , China , Environmental Monitoring , France , Humans , Iran , Kenya , Lactuca , Metals, Heavy/analysis , Nigeria , Risk Assessment , Soil Pollutants/analysis , Wastewater/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...